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Abstract

Cross-view object geo-localization (CVOGL) aims to deter-
mine the location of a specific object in high-resolution satel-
lite imagery given a query image with a point prompt. Exist-
ing approaches treat CVOGL as a one-shot detection task,
directly regressing object locations from cross-view infor-
mation aggregation, but they are vulnerable to feature noise
and lack mechanisms for error correction. In this paper,
we propose ReCOT, a Recurrent Cross-view Object geo-
localization Transformer, which reformulates CVOGL as a
recurrent localization task. ReCOT introduces a set of learn-
able tokens that encode task-specific intent from the query
image and prompt embeddings, and iteratively attend to the
reference features to refine the predicted location. To enhance
this recurrent process, we incorporate two complementary
modules: (1) a SAM-based knowledge distillation strategy
that transfers segmentation priors from the Segment Anything
Model (SAM) to provide clearer semantic guidance with-
out additional inference cost, and (2) a Reference Feature
Enhancement Module (RFEM) that introduces a hierarchi-
cal attention to emphasize object-relevant regions in the ref-
erence features. Extensive experiments on standard CVOGL
benchmarks demonstrate that ReCOT achieves state-of-the-
art (SOTA) performance while reducing parameters by 60%
compared to previous SOTA approaches.

1 Introduction

Cross-view object geo-localization (CVOGL) aims to deter-
mine the geographic location of a specific object indicated
by point prompts in a query image on the reference image
(Sun et al. 2023). The query images can be captured from de-
vices like phones, autonomous vehicles, robots, and drones,
while the reference images are typically high-resolution
satellite images. CVOGL is widely used in various appli-
cations, such as smart city management (Yao et al. 2022),
disaster monitoring (Chini, Pierdicca, and Emery 2009; Ku-
mar, Kim, and Hancke 2013), and robot navigation (Singa-
maneni et al. 2024; Zhai et al. 2024). However, the view gap
poses challenges for CVOGL (Sun et al. 2023).

Recent cross-view image geo-localization (CVIGL)
works (Hu et al. 2018; Shi et al. 2019; Zhu, Shah, and Chen
2022; Yang, Lu, and Zhu 2021; Lin et al. 2022) have demon-
strated their superiority in handling view gaps. However,
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Figure 1: Comparison between the framework of previous
CVOGL approaches and ours. (a) Previous approaches treat
the CVOGL as a prompt-based detection task, where the
model directly regresses the object location based on infor-
mation aggregation once. (b) Our framework reformulates
the CVOGL as a recurrent localization problem, where the
model iteratively refines the localization through a set of
learnable tokens. Please refer to the zoomed-in view for bet-
ter visualization.

CVIGL approaches are fundamentally designed for camera-
level localization using retrieval-based approaches (Deuser,
Habel, and Oswald 2023; Zhang et al. 2024b; Shi et al. 2019)
or fine-grained approaches (Sarlin et al. 2023; Wang et al.
2023). However, CVOGL aims to localize specific objects
(e.g., a building with a red roof) captured in the query image,
which demands prompt-guided and object-aware prediction.
Therefore, in CVOGL scenarios, CVIGL approaches can
only provide a nearby location for the indicated object (Sun
et al. 2023), which is insufficient for precise object-level lo-
calization.

To address this, CVOGL approaches emerge recently. Ex-
isting approaches (Sun et al. 2023; Li et al. 2025; Huang
et al. 2025) typically treat CVOGL as a one-shot detection
paradigm, where the model directly regresses the object lo-
cation based on prompt-guided information aggregation, as
shown in Fig. 1(a). For example, the recent state-of-the-art
(SOTA) approach (Huang et al. 2025) aggregates informa-
tion from cross-view images and prompts to produce a spa-
tial attention matrix, which is used to enhance the refer-
ence image features. The enhanced features are then fed into
several convolutional layers to regress the object location.
While efficient and architecturally simple, such a framework
is sensitive to the quality of the enhanced feature (Cao et al.
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2022). It lacks a correction mechanism for early-stage pre-
diction errors, making them vulnerable to noise in features,
i.e., the model cannot give correct localization once the en-
hanced feature leads to a wrong prediction (Cao et al. 2023;
Sun et al. 2023).

To cope with this, we propose a Recurrent Cross-view
Object geo-localization Transformer (ReCOT). Motivated
by the success of iterative refinement strategies in matching
tasks (Yu et al. 2023; Cao et al. 2022, 2023), ReCOT refor-
mulates the CVOGL task as a recurrent localization prob-
lem, as shown in Fig. 1(b). This serves as the main differ-
ence between previous approaches (Sun et al. 2023; Li et al.
2025; Huang et al. 2025) and our framework. Specifically,
ReCOT initializes a set of learnable tokens, which interact
with the query image feature and prompt embeddings to ex-
tract task-specific intent. These tokens then act as recurrent
ªquestionersº that iteratively attend to the enhanced refer-
ence image features, progressively extracting object-relevant
information and refining the prediction. Both the interaction
and refinement processes are implemented using a combina-
tion of self- and cross-attention mechanisms. The proposed
recurrent strategy enables our ReCOT to effectively enhance
the performance of CVOGL by iteratively refining the initial
prediction, as shown in Fig. 1(b).

Nevertheless, the success of this recurrent strategy in our
token-driven framework relies on the semantic clarity of the
prompts (Li et al. 2025) and the quality of reference fea-
tures (Teed and Deng 2020). Specifically, the learnable to-
kens are first guided by prompt semantics to extract object-
relevant intent, then iteratively attend to the reference fea-
tures to refine the object location in each recurrent step.
Therefore, if prompts lack clear semantic intent or reference
features are cluttered, the tokens may not accumulate correct
task-specific cues across iterations, leading to suboptimal
performance. To tackle this, we introduce two complemen-
tary methods: (1) a SAM-based knowledge distillation strat-
egy, which injects prior knowledge from large-scale model
into the prompt embeddings to boost prompt understanding
while avoiding computational cost during inference, and (2)
a Reference Feature Enhancement Module (RFEM), which
emphasizes object-relevant reference features through hier-
archical attention. These components provide clean visual
and semantic cues, enabling the tokens to effectively accu-
mulate task-specific information during iterative refinement.

We evaluate ReCOT on the standard CVOGL benchmark
(Sun et al. 2023). It achieves state-of-the-art (SOTA) perfor-
mance while reducing parameter count by 60% compared to
the previous SOTA approach (Huang et al. 2025) (29.9M vs.
74.8M), and runs at a competitive inference speed. In sum-
mary, our contributions are as follows:

• We propose ReCOT, a novel framework for CVOGL that
reformulates the task as a recurrent localization problem,
where learnable tokens iteratively attend to reference fea-
tures to refine object localization.

• We introduce a SAM-based knowledge distillation strat-
egy that transfers prior knowledge from a large foun-
dation model into the prompt embeddings, providing
clearer semantic guidance without adding inference cost.

• We design the RFEM, which leverages a proposed hier-
archical attention to highlight object-relevant regions in
the reference feature, thereby facilitating the recurrent lo-
calization process.

2 Related Work

Cross-View Image Geo-Localization (CVIGL). CVIGL
aims to determine the camera’s geographic location by
matching a ground-view query image with the most corre-
lated reference image (Deuser, Habel, and Oswald 2023;
Zhang et al. 2024b; Shi et al. 2019) or position (Sarlin
et al. 2023; Wang et al. 2023; Lentsch et al. 2023). Exist-
ing CVIGL approaches can be grouped into metric learning-
based methods (Lu, Luo, and Zhu 2022; Zhu et al. 2022;
Cai et al. 2019; Shi et al. 2020b; Guo et al. 2022; Shi and
Li 2022; Shi et al. 2022; Hu et al. 2018; Yang, Lu, and
Zhu 2021; Lin et al. 2022; Zhu, Shah, and Chen 2022),
which learn viewpoint-invariant features, and geometry-
based methods (Shi et al. 2020a; Lu et al. 2020; Toker et al.
2021; Liu and Li 2019; Regmi and Shah 2019; Shi et al.
2019), which exploit orientation or structural cues to re-
duce viewpoint gaps. However, CVIGL methods only pro-
vide camera-level localization and cannot accurately pin-
point object-level targets (Sun et al. 2023).

Cross-View Object Geo-Localization (CVOGL).
CVOGL focuses on locating a specific object indicated
by prompts in a query image. DetGeo (Sun et al. 2023)
first formalized this task and proposed a detection-based
framework. Subsequent works, such as VaGeo (Li et al.
2025) and OCGNet (Huang et al. 2025), enhanced cross-
view feature aggregation and prompt embedding. Despite
progress, existing CVOGL methods still rely on one-shot
detection, which is sensitive to noisy features and lacks
mechanisms for error correction (Cao et al. 2022). In
contrast, we reformulate CVOGL as a recurrent localization
problem and propose ReCOT to address these limitations.

3 Methodology

Fig. 2 presents the architecture of ReCOT, which reformu-
lates CVOGL as a recurrent localization task. A set of learn-
able tokens is initialized to encode task-specific intent from
the query image features and prompt embeddings. These to-
kens act as recurrent ªquestionersº that iteratively extract
object-relevant cues from the reference features and refine
the predicted location through cross-attention mechanisms.
Additionally, we introduce two complementary methods to
enhance this recurrent process: (1) a SAM-based knowl-
edge distillation strategy, which transfers segmentation pri-
ors from the Segment Anything Model (SAM) to enhance
prompt semantics, and (2) a Reference Feature Enhance-
ment Module (RFEM), which provides object-relevant ref-
erence features through proposed hierarchical attention for
the recurrent stage.

Recurrent Localization Framework

Motivation. As shown in Fig. 1, existing CVOGL ap-
proaches follow a one-shot detection paradigm, directly pre-
dicting the object location from enhanced reference features.
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Figure 2: Overall architecture of our recurrent cross-view object geo-localization transformer (ReCOT). ReCOT reformulates
the CVOGL task as a recurrent localization task, which leverages a set of learnable tokens to extract information from cross-
view images and prompts to recurrently refine the prediction. Notably, all recurrent steps in ReCOT share the same ªMHCAº
and ªLinearº component.

However, such frameworks are often sensitive to feature
noise and lack a mechanism for error correction (Cao et al.
2022, 2023). Fundamentally, CVOGL can be regarded as
a cross-view matching problem, where recurrent strategies
have shown superior robustness across domains (Cao et al.
2022; Teed and Deng 2020). Inspired by this, we reformu-
late CVOGL as a recurrent localization process. Moreover,
unlike dense matching tasks (Cao et al. 2023; Yu et al. 2023;
Edstedt et al. 2024), CVOGL is prompt-driven and focuses
on object-level semantic matching. This calls for a represen-
tation that can both encode semantic intent and drive itera-
tive refinement. To this end, we draw inspiration from the
class token in vision transformers (ViT) (Dosovitskiy et al.
2021), and introduce a set of learnable tokens that absorb
task-specific semantics from the query and prompt. Acting
as semantic carriers, these tokens can recurrently interact
with the reference feature to enable step-wise prediction.

Structure. We initialize a set of learnable tokens T ∈
R

n×c, where n and c denote the number of tokens and
the feature dimension, respectively. To enable T to extract
object-relevant information from the reference features, T
needs to first acquire task-specific semantics from the query
image feature Fq ∈ R

hqwq×c and the point prompt em-
bedding P ∈ R

c. Here, hq and wq denote the height and
width of the query feature, respectively. Specifically, we
concatenate T with Fq along the spatial dimension, yielding

Fqc ∈ R
(n+hqwq)×c. Following standard operations in Vi-

sion Transformers (ViT) (Dosovitskiy et al. 2021), we apply
self-attention to Fqc, allowing T to aggregate global context
from the query image. The resulting tokens are denoted as
Tq. To further inject object-level intent, the point prompt P
embedded interacts with Fqc through cross-attention. This
enables the prompt to semantically guide the tokens, allow-
ing Tq to further incorporate object-level context. After in-
teraction, we denote the concatenated feature and tokens as
F′

qc and T′, respectively. The F′

qc and Tq are further utilized
to enhance reference features in RFEM. The enhanced ref-

erence feature are denoted as F′

r ∈ R
hrwr×c, where hr and wr

denote the height and width of the reference feature, respec-
tively

After acquiring task-specific semantics from the query
and prompt, we use T′ to perform recurrent localization, as
shown in Fig. 2. Let T′

i denote the token state at the i-th
refinement step, where i ∈ [0, 1, 2, . . . ,m]. We set m to 6
in our work experimentally. At each step, T′

i attends to the
enhanced reference feature F′

r to extract object-relevant cues
and update the task-specific intent. Formally, the update pro-
cess is defined as

T′

i+1 = MHCA(T′

i,F
′

r) (1)

where MHCA(·, ·) denotes the multi-head cross-attention
module. Here, T′

i serves as the query, while F′

r acts as the
key and value. This recurrent attention mechanism enables
iterative refinement, where the tokens T′ progressively accu-
mulate task-specific semantics and extract increasingly rele-
vant information from the fixed reference feature F′

r. The T′

i

of each step is fed into a linear layer to predict an updated
object location, allowing the model to gradually converge
toward a precise localization.

At each refinement step i, we introduce a loss LToken to
guide the generation of T′

i. Specifically, since T′

i is expected
to contain the task-specific intent in cross-view features, it
should be able to highlight the required object area on F′

r.
Therefore, in each refinement step, we first aggregate T′

i

along the spatial dimension to generate a global embedding
T′′

i , and use T′′

i ∈ R
1×c and F′

r to produce an aggregation
map m̂o ∈ R

1×hr×wr . This can be expressed as

T′′

i = Sum(T′

i · Softmax(T′

i)), (2)

m̂oi = σ(T′′

i F′T

r ), (3)

where σ(·) and Softmax(·) denote the sigmoid and softmax
function, respectively. Sum(·) is the summing along the spa-
tial dimension. We then utilize a box-level mask moi pro-
duced using the ground truth box to supervise the generation



of m̂o, which can be expressed as

LTokeni(mo, m̂oi) = Lbce(mo, m̂oi) + Ldice(mo, m̂oi), (4)

where Lbce(·, ·) and Ldice(·, ·) denote the binary cross-
entropy loss and the Dice Loss (Milletari, Navab, and Ah-
madi 2016), respectively.

How ReCOT works. As shown in Fig. 3(a), previous
one-shot detection CVOGL approaches (Sun et al. 2023; Li
et al. 2025; Huang et al. 2025) rely on a single forward infor-
mation aggregation and are thus sensitive to noisy features
(Cao et al. 2022, 2023). Our ReCOT adopts a recurrent local-
ization mechanism that iteratively refines predictions. The
visualization in Fig. 3(b) of cross-attention weights between
tokens and the reference feature reveals the inner dynam-
ics of this refinement process. It can be seen that different
tokens focus on different regions of the reference feature,
indicating a form of token-level specialization. For object-
relevant tokens, their attention gradually concentrates and
intensifies around the object region across recurrent steps,
reflecting the ability to correct early prediction error and pro-
gressively refine the prediction. In contrast, object-irrelevant
tokens experience a decrease in their attention responses
and eventually stabilize to background patterns once they
no longer contribute to the object localization. This behav-
ior highlights the competitive nature of token updates, i.e.,
multiple tokens initially compete to explain different parts
of the reference feature (Carion et al. 2020), but those cor-
related with the object receive positive feedback and their
attention weights are amplified over recurrent steps, leading
to iterative convergence. Such dynamics demonstrate the ef-
fectiveness of recurrent refinement mechanism in suppress-
ing irrelevant regions while enhancing object-relevant cues.

SAM-based Knowledge Distillation

Motivation. Point prompt understanding is essential for
CVOGL to correctly locate objects. However, point prompt
itself suffers from semantic ambiguity, leading to unsatis-
factory performance (Kirillov et al. 2023). To address this,
we propose a SAM-based knowledge distillation strategy to
boost the prompt understanding of ReCOT. The incorpora-
tion of SAM (Kirillov et al. 2023) is motivated by an obser-
vation that SAM can give a mask with a clear indication of
the required object using point prompts and corresponding
images. However, directly applying SAM during inference
incurs a large computation overhead. Hence, we leverage
predictions of SAM as supervision signals, transferring its
knowledge through knowledge distillation.

Structure. We extract the query feature F′

q from the pre-

vious concatenated feature F′

qc. Notably, the F′

q has been in-
teracted with prompt embedding and is supposed to contain
the object-level semantic. Therefore, we process it using a
lightweight convolutional head followed by a sigmoid acti-
vation to generate a segmentation map m̂q. Meanwhile, we
use SAM to generate a pseudo ground-truth mask mSAM

from the query image and point prompt, This mask is used
to supervise the segmentation out of F′

q via LSAM, which can
be defined as

LSAM(mSAM, m̂q) = Lbce(mSAM, m̂q) + Ldice(mSAM, m̂q),
(5)

Cross-View Information & Prompt Information

Information Aggregation

En
ha

nc
ed

 
Re

fe
re

nc
e 

Fe
at

ur
e

Detect

Previous One-Shot Framework (a)
？

？

Point PromptPrediction results of our method
Ground truth Prediction results of Previous Approach

�

Our Recurrent Localization Framework (b)
Results

Attention Weights

…
…

…
1 3 6

1 3 6

1 3 6

�� �IoU:0 IoU:0.85 IoU:0.86

Object-Relevant Token

Object-Irrelevant Token

↑ ↑

↑ --

… …

… …

↑ Strengthened，

↑

Weakened, or Unchanged compared to previous steps.--

Figure 3: Comparison between the previous one-shot frame-
work and our recurrent localization framework. (a) Previous
approaches (Li et al. 2025; Sun et al. 2023; Huang et al.
2025) rely on single-shot information aggregation, which is
sensitive to noisy enhanced features and often leads to incor-
rect predictions. (b) Our ReCOT iteratively refines predic-
tions through learnable tokens. The attention weight visual-
izations show that object-relevant tokens progressively fo-
cus and strengthen around the target, while object-irrelevant
tokens weaken and stabilize to background patterns. Please
refer to the zoomed-in view for better visualization.

�q′
�lr �q′ ∙ �lr

�lr
��r

�

MHCA Multi-Head Cross-Attention

MHCA

�qc′ �r′
Ag

gr
eg

at
io

n �q′

Key Value

Global Information 
of Query Image

��
Reference Image

Spatial Attention

Point Prompt

Up-Sample

Query

Cross Attention

R
ef

in
e

Hierarchical 
Attention

Figure 4: Architecture of reference feature enhance-
ment module (RFEM). RFEM enhances reference features
through a hierarchical attention pipeline to obtain F′

r.

Reference Feature Enhancement Module

Motivation. In CVOGL, the reference feature Fr ex-
tracted by the backbone encoder is typically generic and
background-dominated, lacking object-level specificity be-
fore prompt interaction (Sun et al. 2023; Li et al. 2025). In
our framework, guiding Fr to focus on the expected object
indicated by the prompt can significantly ease the down-
stream recurrent localization (Cao et al. 2023; Teed and
Deng 2020). To this end, we propose the Reference Feature
Enhancement Module (RFEM), which enhances reference
features into a more object-aware representation F′

r. Unlike
previous approaches (Sun et al. 2023; Li et al. 2025; Huang
et al. 2025) that attempt to clearly highlight the object fea-
tures through one-shot feature enhancement, RFEM serves
as a preparatory module to filter irrelevant features and pro-
vide more object-relevant information for subsequent recur-
rent localization. The key of RFEM lies in its hierarchical
attention design. We first perform spatial attention to high-
light the query-relevant regions in the reference feature, as



the expected object is likely confined to these regions. We
then apply cross-attention guided by the query and prompt
cues to refine these regions with object-level semantics. This
spatial-to-cross hierarchy yields a cleaner and more infor-
mative reference feature F′

r, which significantly benefits the
iterative localization process of ReCOT.

Structure. Specifically, as illustrated in Fig. 4, we uti-
lize two levels of reference features, i.e.. a low-resolution
semantic feature Flr ∈ R

hr×wr×c that captures scene seman-
tics, and a high-resolution detailed feature Fhr ∈ R

2hr×2wr×c

that preserves fine-grained spatial structures (Zhang et al.
2024c).

Spatial Attention: We leverage the spatial attention to
highlight query-relevant features. Specifically, We first ag-
gregate the query tokens Tq into a global descriptor T′

q

(Eq. (2)). Notably, the T′

q contains only the global infor-
mation of the query image without prompt guidance. This
descriptor correlates with Flr via a dot-product operation to
produce a spatial attention map as

M = σ(T′

qFT

lr ), (6)

which highlights query-relevant regions. The attention map
is then up-sampled and applied to Fhr by element-wise mul-
tiplication, suppressing irrelevant background and narrow-
ing the focus to potential object areas.

Cross Attention: We leverage the cross-attention to incor-
porate detailed query features and prompt semantics for fur-
ther refining the reference feature. The filtered Fhr is subse-
quently refined via cross-attention with Fqc, which encodes
fine-grained prompt cues and detailed query features. This
cross-attention step sharpens the object-relevant responses
and injects object-level semantics into the reference repre-
sentation.

Finally, the updated feature is down-sampled and refined
through spatial attention (Woo et al. 2018) and self-attention
(Dosovitskiy et al. 2021) to generate the F′

r, which is then
passed to the recurrent localization stage in ReCOT.

Why multi-resolution reference features? The refer-
ence image typically contains both global scene informa-
tion and fine-grained object details. The low-resolution se-
mantic reference feature Flr extracted from deeper layers
of the backbone encodes more scene-level context but lose
spatial details due to down-sampling. Therefore, we utilize
Flr to enhance query-relevant regions. Conversely, the high-
resolution reference features Fhr preserve fine structural de-
tails but are dominated by background noise. Thus, it needs
to be refined by the attention map produced by Flr, and then
RFEM can utilize it to perform object-level enhancement.
This design leverages advantages of multi-resolution fea-
tures, which is crucial for object-level feature enhancement
in CVOGL (Huang et al. 2025).

Loss Function

Our training objective L is defined as a weighted sum of the
localization loss Llocal and the auxiliary loss Laux. It can be
defined as

L = Llocal + αLaux, (7)

where Llocal denotes the sum of DETR-style detection
losses LDet computed at each recurrent localization step (see

Steps m
Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

1 49.74 46.25 78.31 71.74

2 51.08 47.17 78.21 72.15

3 51.28 47.58 78.21 72.35

4 51.39 47.89 77.90 72.56

5 52.00 48.10 77.60 72.05

6 51.70 48.10 77.49 71.84

Table 1: Ablation study on the recurrent localization stepsm
of ReCOT in terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑
on the test set of CVOGL-DetGeo dataset. Bold and Under-
line indicate the best and second-best results, respectively.

Component
Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

w/o RFEM 46.45 42.24 50.15 46.04

w/o LSAM 49.74 44.81 70.91 65.78

w/o LToken 50.57 47.58 72.05 66.80

ReCOT (Ours) 52.00 48.10 78.21 72.35

Table 2: Ablation study on the components of ReCOT in
terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑ on the test
set of CVOGL-DetGeo dataset.

RFEM
Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

w/o M 51.18 47.48 75.44 70.30

Replace Flr with Fhr 48.00 44.19 75.85 70.09

Replace Fhr with Flr 47.49 43.28 75.64 67.11

ReCOT (Ours) 52.00 48.10 78.21 72.35

Table 3: Ablation study inside the RFEM in terms of
Acc@0.25(%) ↑ and Acc@0.50(%) ↑ on the test set of
CVOGL-DetGeo dataset.

Fig. 2). The auxiliary loss Laux is the sum of LTokeni across
all recurrent steps and the SAM-based distillation loss LSAM.
The balancing coefficient α is set to 1 in all experiments.

4 Experiment

Datasets

CVOGL-DetGeo dataset (Sun et al. 2023) divides the task
into ªGround → Satelliteº task and ªDrone → Satelliteº
task. It contains 6,239 pairs of ªGround → Satelliteº view
and 6,239 pairs of ªDrone → Satelliteº view query and ref-
erence images. The ground view query images, drone view
query images, and satellite view reference images are sized
to 512 × 256, 256 × 256, and 1024 × 1024, respectively.
Each cross-view task uses 4,343 pairs for training, 923 pairs
for validation, and 973 pairs for testing. Our experiments
utilize the training set to train the model and select the best
model on the validation set for evaluation on the test set.



Ground→Satellite Drone→Satellite
Method

Test Set Validation Set Test Set Validation Set
Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

CVM-Net (Hu et al. 2018) 4.73 0.51 5.09 0.87 20.14 3.29 20.04 3.47
RK-Net (Lin et al. 2022) 7.40 0.82 8.67 0.98 19.22 2.67 19.94 3.03

L2LTR (Yang, Lu, and Zhu 2021) 10.69 2.16 12.24 1.84 38.95 6.27 38.68 5.96
Polar-SAFA (Shi et al. 2019) 20.66 3.19 19.18 2.71 37.41 6.58 36.19 6.39

TransGeo (Zhu, Shah, and Chen 2022) 21.17 2.88 21.67 3.25 35.05 6.47 34.78 5.42
SAFA (Shi et al. 2019) 22.20 3.08 20.59 3.25 37.41 6.58 36.19 6.39

GeoDTR+ (Zhang et al. 2024b) 14.19 5.14 14.08 1.95 16.03 4.73 15.71 3.68

DetGeo (Sun et al. 2023) 45.43 42.24 46.70 43.99 61.97 57.66 59.81 55.15
VaGeo (Li et al. 2025) 48.21 45.22 47.56 44.42 66.19 61.87 64.25 59.59

OCGNet (Huang et al. 2025) 51.49 47.69 48.54 44.20 68.39 63.93 66.52 61.86

ReCOT (Ours) 52.00 48.10 48.43 43.66 78.21 72.35 74.00 67.17

Table 4: Comparisons in terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑ on the CVOGL-DetGeo dataset. Bold and Underline
indicate the best and second-best results, respectively.

Method Param (M)↓ FPS↑

DetGeo (Sun et al. 2023) 73.8 29.5

VaGeo (Li et al. 2025) ± ±

OCGNet (Huang et al. 2025) 74.8 27.7

ReCOT (Ours) 29.9 25.7

Table 5: Model complexity and runtime comparison in terms
of parameters (M)↓ and FPS↑. Bold and Underline indicate
the best and second-best results, respectively.

Evaluation Metrics

Following the pioneering work DetGeo (Sun et al. 2023),
we adopt Acc@0.25 and Acc@0.50 for evaluation. For each
pair of the query and reference image, we select the box with
the highest confidence output by our model as the final pre-
diction box. Additionally, we use the parameter to show the
model efficiency. Higher Acc@0.25, higher Acc@0.50, and
fewer parameter denote better performance. Please refer to
the supplementary material for detailed introduction of eval-
uation metrics.

Implementation Details

We conduct all experiments on four NVIDIA GeForce
RTX 4090 GPUs, with implementations based on PyTorch
(Paszke et al. 2019). For training, we adopt the AdamW
(Loshchilov and Hutter 2017) as the optimizer and set the
initial learning rate to 0.0025, the weight decay rate to
0.0001, and the batch size to 16. We train our network for
300 epochs for all the experiments. Since CVOGL is a rel-
atively new task, we follow the pioneering work (Sun et al.
2023) and select five CVIGL approaches (Hu et al. 2018;
Lin et al. 2022; Yang, Lu, and Zhu 2021; Shi et al. 2019;
Zhu, Shah, and Chen 2022) and the existing CVOGL ap-
proaches (Sun et al. 2023; Li et al. 2025; Huang et al. 2025)
as our comparison methods. The results of CVIGL compar-
ison methods can be found in previous works (Sun et al.
2023; Huang et al. 2025; Li et al. 2025). Additionally, we

adopt swin transformer (Swin-t) (Liu et al. 2021) as the im-
age encoder for its superior performance on various fields
(Zhang et al. 2024a; Shi et al. 2024; Chi, Yuan, and Wang
2023; Zamir et al. 2022). We set the hyper-parameter m to 6
during training.

Ablation Study

Effect of Total Recurrent Localization Steps. Table 1 in-
vestigates the impact of varying the total number of recurrent
steps m on ReCOT performance. For the Ground→Satellite
task, increasing m from 1 (one-shot prediction) to 5
yields consistent improvements, with the best performance
achieved at m = 5. In contrast, for the Drone→Satellite
task, the performance saturates earlier, with m = 3 giving
the relatively optimal results. This discrepancy indicates that
the optimal number of recurrent steps is task-dependent due
to differences in viewpoint variations and feature alignment
difficulty across scenarios. Further increasing m beyond the
optimal point does not bring additional gains and may even
slightly degrade performance, which can be attributed to
over-refinement and overfitting in deeper iterations (Hur and
Roth 2019; Cao et al. 2023; Yu et al. 2023). Based on the re-
sults, we set m to 5 for the Ground→Satellite task, while
m = 3 for the Drone→Satellite task. We keep this setting in
other experiments of this work.

Effect of Components in ReCOT. Table 2 presents the
ablation study of the key components in ReCOT on the
CVOGL-DetGeo test set. Removing the RFEM module (w/o
RFEM) leads to a noticeable performance drop, confirming
that early reference feature enhancement is critical for guid-
ing tokens to focus on relevant regions. Similarly, remov-
ing the SAM-based distillation loss LSAM (w/o LSAM) re-
sults in performance degradation, indicating the importance
of accurate prompt semantics understanding. The full Re-
COT model achieves the best performance across both sce-
narios. In addition, removing the token-guidance loss LToken

(w/o LToken) also degrades performance, which highlights its
role in encouraging the learnable tokens to accurately cap-
ture object-relevant areas during recurrent refinement. These
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Figure 5: Visualization of some representative results produced by our ReCOT and the previous work (Sun et al. 2023). Please
refer to the zoomed-in view for better visualization.

results collectively validate that RFEM, LSAM, and LToken

complement each other, contributing to the robust perfor-
mance of ReCOT.

Effect of Components Within the RFEM. Table 3 inves-
tigates the contributions of components within the RFEM.
Removing the weight matrix M (w/o M) leads to a notice-
able performance drop, particularly in the Drone→Satellite
setting. This confirms that the spatial attention stage bene-
fit the reference feature enhancement. Furthermore, replac-
ing the low-resolution semantic feature Flr with the high-
resolution feature Fhr and replacing Fhr with Flr both re-
sult in performance degradation, highlighting the impor-
tance of leveraging multi-resolution reference features in
RFEM. Please refer to the supplementary material for more
ablation study results.

Comparison Results

Quantitative Results. Table 4 compares ReCOT with
existing SOTA cross-view localization approaches on
the CVOGL-DetGeo dataset. ReCOT consistently outper-
forms all competitors in both the Ground→Satellite and
Drone→Satellite settings, achieving new SOTA perfor-
mance across almost all metrics in the test set. Despite
relatively lower performance on the validation set for
Ground→Satellite, it maintains the best performance on the
test set, indicating stronger generalization ability. Notably,
as shown in Table 5, these performance gains are achieved
with significantly fewer parameters, representing a 60% re-
duction in model size. ReCOT is a little slower in inference
speed compared to the previous CVOGL works (Sun et al.
2023; Huang et al. 2025) due to iterative framework (Cao
et al. 2023). However, it still achieves a competitive infer-
ence speed, making ReCOT both efficient and scalable for
real-world applications. Compared to the Drone→Satellite
setting, the improvement of ReCOT on Ground→Satellite is
relatively smaller. This is mainly due to the larger viewpoint

gap and severe occlusions in ground-view images (Sun et al.
2023), where objects are often partially visible or obstructed
by surrounding structures. Moreover, ground images typi-
cally contain more background clutter, making recurrent lo-
calization harder. We believe integrating geometric priors
(e.g., camera pose estimation) or multi-view fusion could
further boost Ground→Satellite performance. Please refer
to the supplementary material for more comparison results.

Qualitative Results. Fig. 5 visualizes some representa-
tive results. As the recurrent steps proceed, our model pro-
gressively refines the bounding boxes, leading to higher-
quality localization compared to the single-shot prediction
of the previous approach (Sun et al. 2023). However, the op-
timal number of recurrent steps varies across different sce-
narios, and excessive iterations may cause over-refinement
(Hur and Roth 2019), resulting in a slight performance drop.
Therefore, based on the ablation results in Table 1, we set
the number of recurrent steps to 5 for Ground→Satellite and
4 for Drone→Satellite, which provides the best trade-off be-
tween accuracy and stability.

5 Conclusion

In this paper, we proposed ReCOT, which reformulates the
CVOGL task as recurrent localization problem. By introduc-
ing learnable tokens to encode task-specific semantics and
recurrently refine predictions, ReCOT addresses the limita-
tions of one-shot detection paradigms of previous CVOGL
works. We further incorporate a SAM-based knowledge dis-
tillation scheme to improve prompt understanding without
incurring additional inference costs, and a RFEM to pro-
duce object-aware reference features via a hierarchical atten-
tion strategy. Extensive experiments on the CVOGL-DetGeo
benchmark demonstrated that ReCOT achieves state-of-the-
art performance with significantly fewer parameters and
competitive inference speed.
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6 More Experimental Results

Detailed Introduction of Evaluation Metrics.

Definition of Acc@0.25 and Acc@0.50. The Acc@0.25
and Acc@0.50 measure the prediction accuracy under a spe-
cific intersection over union (IoU) threshold t between the
predicted box bp and ground box bg as

Acc@t =
1

n

n∑

i=1

ψ(t), (8)

where

ψ(t) =

{
1, IoU(bp, bg) ≥ t
0, otherwise

, (9)

IoU(bp, bg) =
|bp ∩ bg|

|bp ∪ bg|
. (10)

More Ablation Study Results

Effect of the parameter α. Table 6 shows how the perfor-
mance of ReCOT varies with different values of the bal-
ancing coefficient α, which controls the weight between
the localization loss Llocal and the auxiliary loss Laux. We
observe that α = 1 yields the best performance on both
Ground→Satellite and Drone→Satellite. A smaller value
(α = 0.1) weakens the supervision of token alignment and
SAM distillation, slightly reducing accuracy. Conversely, a
larger value (α = 10) overemphasizes auxiliary objectives,
causing a notable drop. These results indicate that α = 1
achieves the optimal trade-off.

Effect of the hyper-parameter n. Table 7 investigates
the impact of the token number n on the performance of Re-
COT. We observe a clear performance gain when increasing
n from 1 to 100. This demonstrates that a sufficient number
of tokens provides a richer representation of task-specific in-
tent and better coverage of cross-view semantics, which ben-
efits the recurrent refinement process. However, when n is
further increased to 200, performance drops across all met-
rics. This decline is likely due to over-parameterization and
token redundancy, which can introduce noise and hinder ef-
fective attention learning (Dosovitskiy et al. 2021), as also
observed in token-scaling studies (Dosovitskiy et al. 2021;
?). Therefore, we set n to 100 in this work.

α

Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

0.1 51.28 48.10 75.13 69.68

1 52.00 48.10 78.21 72.35

10 48.51 45.02 76.05 70.20

Table 6: Ablation study on the hyper-parameter α in terms
of Acc@0.25(%) ↑ and Acc@0.50(%) ↑ on the test set of
CVOGL-DetGeo dataset.

n

Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

1 47.89 43.37 74.31 68.86

100 52.00 48.10 78.21 72.35

200 50.46 47.28 72.25 67.01

Table 7: Ablation study on the hyper-parameter n in terms
of Acc@0.25(%) ↑ and Acc@0.50(%) ↑ on the test set of
CVOGL-DetGeo dataset.

Method
Ground→Satellite Drone→Satellite

Acc@0.25 Acc@0.50 Acc@0.25 Acc@0.50

DetGeo 45.43 42.24 61.97 57.66

DetGeo* 46.01 41.44 66.60 56.11

VaGeo 48.21 45.22 66.19 61.87

OCGNet 51.49 47.69 68.39 63.93

ReCOT (Ours) 52.00 48.10 78.21 72.35

Table 8: Comparisons between DetGeo (Sun et al. 2023),
DetGeo using Swin-t (Liu et al. 2021) (DetGeo*), and our
methods in terms of Acc@0.25(%) ↑ and Acc@0.50(%) ↑
on the test set of CVOGL-DetGeo dataset. Bold and Under-
line indicate the best and second-best results, respectively.

More Comparison Results.

Quantitative Results. As shown in Table 8, we replace the
backbone of DetGeo (Sun et al. 2023) with Swin-t (Liu et al.
2021) for a more comprehensive and fair comparison. While
the upgraded DetGeo* shows slight improvements on the
Acc@0.25, it still lags behind our ReCOT by a large mar-
gin across all evaluation metrics. Moreover, the backbone
replacement does not lead to consistent gains, as DetGeo*

fails to outperform other recent CVOGL methods (Li et al.
2025; Huang et al. 2025) in Table 8. This demonstrates that
the key factor of CVOGL does not lie in the backbone.
In contrast, our proposed ReCOT achieves superior perfor-
mance through a more effective and task-aligned framework,
highlighting the importance of architectural innovations for
CVOGL.

Qualitative Results. Fig. 6 provides more visualization
results of the cross attention weights beteen the token and
reference features during recurrent process. As the recurrent
steps progress, object-relevant tokens gradually focus and
strengthen around the expcted object, enabling the bound-
ing box to converge toward the correct location. In contrast,
object-irrelevant tokens weaken and gradually stabilize over
iterations. This behavior highlights the ability of ReCOT to
dynamically disentangle object-focused information from ir-
relevant features, which is a key factor driving the success of
our recurrent localization strategy.
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Figure 6: Visualizations of how our ReCOT works. The object-relevant tokens progressively focus and strengthen around the
indicated object, while object-irrelevant tokens weaken and stabilize to background patterns.
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Figure 7: Examples of failure cases. Please refer to the
zoomed-in view for better visualization.

7 Limitations and Future Work

As shown in Fig. 7, some failure cases of ReCOT are caused
by ambiguous or imprecise point prompts, which often high-
light only a part of the object rather than its entirety. This
ambiguity misguides the token-driven recurrent refinement
process, leading to suboptimal localization results. In the

future, we will incorporate multi-modal prompts (e.g., tex-
tual descriptions or bounding boxes) to provide richer and
more accurate prompt semantics. Such multi-modal guid-
ance could reduce ambiguity and further improve the robust-
ness and precision of recurrent localization.
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