The Quantum Reserve Token: A Decentralized Digital Currency Backed by **Quantum Computational Capacity as a Candidate for Global Reserve Status**

Amarendra Sharma¹

Version 1.0

March 26, 2025

Abstract

The U.S. dollar's dominance as the global reserve currency is increasingly precarious, strained by a \$36 trillion national debt, geopolitical tensions, and the rise of digital currencies. This paper proposes the Quantum Reserve Token (QRT). QRT should be viewed as a decentralized digital currency backed by quantum computational capacity. It presents itself as a transformative alternative. Unlike Bitcoin's volatility rooted in fixed supply, stablecoins' reliance on fiat credibility, or central bank digital currencies' (CBDCs) national constraints, QRT leverages quantum computing power—a scarce, productive asset projected to contribute more than \$1 trillion to global GDP by 2035 (McKinsey, 2023)—as its value anchor. I propose a framework grounded in monetary theory, compare QRT to existing digital systems, and assess its feasibility across technological, economic, geopolitical, and adoption dimensions. QRT offers a stable, neutral, and scalable reserve currency and has the potential to redefine the global monetary order.

JEL Classifications: E42, E51, O33

Keywords: Reserve Currencies, Digital Currencies, International Monetary System, Quantum

Computing

1. Introduction

The U.S. dollar's status as the world's reserve currency, established at the 1944 Bretton Woods

conference, has guided global finance for eight decades. As of Q3 2024, it comprises 57.4% of

worldwide allocated foreign exchange reserves (IMF, 2024a), facilitating \$20 trillion in dollar-

denominated assets (BIS, 2024) and enabling the U.S. to borrow at yields as low as 4.2% on 10-

year Treasuries (U.S. Treasury, 2025). This dominance—termed an "exorbitant privilege" by

¹ Department of Economics, Binghamton University, NY, USA. Email: aksharma@binghamton.edu

1

Eichengreen (2011)—also enables economic coercion, such as Russia's exclusion from SWIFT in 2022, impacting \$300 billion in reserves (Reuters, 2023a). However, challenges are mounting: a national debt of \$36.2 trillion (123% of GDP, U.S. Treasury, 2025), political paralysis evidenced by many government shutdown threats (Brass et al, 2018), and de-dollarization moves, including China's 50-billion-yuan currency swap deal with Saudi Arabia in 2023 (Reuters, 2023).

However, the traditional alternatives have not fared well either. The euro, at about 20% of reserves (IMF, 2024), is undermined by the Eurozone's lack of fiscal integration—e.g., Denmark's 3.1% share of the GDP in budget surplus versus Italy's 7.4% deficit in 2023 (Eurostat, 2024). The yuan, at 2.17% of reserves, is constrained by China's capital controls and a decline in foreign investor confidence (OSW, 2024). Digital currencies offer new contenders. Bitcoin's \$1 trillion market cap (Coin Market Cap, 2024), stablecoins' \$150 billion circulation (Circle, 2024), and CBDCs' state-backed innovation. Yet, Bitcoin's volatility (80%, March 2023-March 2025, V-Lab, 2025), stablecoins' dollar linkage, and CBDCs' national scope fail criteria of stability, liquidity, and universal trust that typically characterize reserve currency.

This paper introduces the concept of Quantum Reserve Token (QRT), a decentralized digital currency backed by quantum computational capacity, as a novel alternative. Quantum computing, with its ability to solve Nondeterministic Polynomial Time (NP-hard) problems exponentially faster than classical systems (Arute et al., 2019), is projected to add more than \$1 trillion to global GDP by 2035 via optimization and cryptography (McKinsey, 2023). QRT aims to transcend national currencies' geopolitical constraints and cryptocurrencies' instability, offering a stable, neutral reserve currency. The analysis proceeds as follows: Section 2 reviews monetary and digital currency; Section 3 details QRT's design; Section 4 compares it to peers; Section 5 evaluates feasibility; and Section 6 concludes.

2. Literature Review

2.1 Reserve Currencies and Monetary Theory

Reserve currencies historically reflect economic hegemony and trust (Triffin, 1960). The dollar gradually displaced the pound sterling as U.S. GDP surged to half of global output by 1945. A shift hastened by Britain's massive WWI debt (over \$30 billion) and loss of financial credibility. This transition culminated in the 1944 Bretton Woods system. This led to the formalization of dollar dominance (Kindleberger, 1986; Eichengreen, 2019). The sustainability of a reserve currency demands fiscal discipline. Several studies have raised concerns about the rising US debtto-GDP ratio - which currently stands at 123% - and its implications for the US dollar's reserve currency status (See, Prasad & Ye, 2013; Farhi & Maggiori, 2018). The Quantum Reserve Token (QRT) proposed in this paper, draws inspiration from Fisher's (1911) Quantity Theory of Money, which connects money supply to economic output, Keynes' (1936) Liquidity Preference Theory, which underscores the importance of trust in a currency's reliability, and Friedman's (1968) monetarist principles, which advocate for predictable money supply rules to ensure stability. By integrating these foundational concepts, QRT aims to establish a decentralized currency framework leveraging quantum computing advancements, offering a potential alternative to traditional reserve systems.

2.2 Digital Currencies

Bitcoin, which was launched by Nakamoto (2008), pioneered the decentralization regime with a 21-million-coin supply cap. It resulted in Bitcoin achieving a \$1 trillion market cap by 2024 (Coin Market Cap, 2024). However, its reserve potential is weakened by volatility (e.g., annual volatility of 80% versus the dollar's 8% over the last two years) and energy consumption (169 Terawatt Hours annually, comprising approximately 0.66% of global electricity consumption, CBECI,

2024). On the other hand, Stablecoins like Tether (\$100 billion in circulation) and USDC (\$50 billion in circulation) pegged to fiat currency at 1:1 ratio (Circle, 2024), accomplish stability. However, the increased stability came with increased collapse risks due to erosion of trust. The case in point is the Tether's \$41 million fine for reserve opacity where it was only 74% backed by cash (NYAG, 2021). CBDCs, such as China's e-CNY (180 million wallets, Ledger Insights 2024), digitize fiat currency with recent circulation estimated to be around 7300 billion Yuan (Ledger Insights 2024). However, their very low cross-border share and surveillance of retail payments (Auer et al., 2022) hinder global trust.

2.3 Quantum Computing

Quantum computing, which harnesses the concepts of superposition and entanglement, has revolutionized the computational speed. Thereby enabling it to significantly outperform classical systems for certain tasks. This potential is exemplified in Shor's (1999) algorithm, which demonstrates it by factoring large integers in O(log N) time. Whereas the effort grows exponentially with the number's size in the classical O(e^N) complexity (Nielsen & Chuang, 2010). The exponential advantage of quantum computing was clearly demonstrated by Google's 2019 quantum supremacy experiment. Its Sycamore processor took just 200 seconds to complete a specialized calculation, which a classical supercomputer would have taken an estimated 10,000 years (Arute et al., 2019). However, the practical applications of quantum computing are tempered by its current limitations, such as noise restricting qubit coherence to 100 microseconds (Preskill, 2018). IBM after developing a 1,121 superconducting qubit quantum processor named Condor in 2023, envisions even more advancements in system modularity in the coming years. This system's potentially groundbreaking optimization capabilities could lead to a significant reduction in costs within a supply chain, achieved through efficient problem-solving. This potential significantly

augments McKinsey's (2023) projection of a more than \$1 trillion GDP contribution by the year 2035. These groundbreaking capabilities allow Quantum Reserve Token (QRT) to capitalize by establishing a direct link between currency and quantum computational output. The innovative approach of Quantum Reserve Token (QRT) builds on a synthesis of Schumpeter's (1934) concept of economic progress driven by technological innovation and principles from monetary theory that emphasize the relationship between money supply, output, and stability. The quantum computing advancements provide a foundation to create a decentralized currency system distinct from the traditional frameworks.

3. Quantum Reserve Token: Design and Conceptual Model

3.1 Theoretical Underpinnings

The Quantum Reserve Token (QRT) is designed to satisfy the three standard functions of money. It serves as a medium of exchange through blockchain-based transfers, a store of value through its quantum computing foundation, and a unit of account through standardized computational output. Kindleberger (1981) suggests that international reserve currencies should possess three characteristics, viz, liquidity, stability, and acceptance the Quantum Reserve Token (QRT) aims to achieve liquidity through a scalable blockchain infrastructure, stability via controlled issuance, and acceptance through its decentralized and neutral structure.

Moreover, QRT's issuance is linked to computational productivity, which potentially supports consistent purchasing power. This is consistent with Fisher's (1911) Quantity Theory of Money, which relates money supply to economic output through the equation MV = PY.

Analogous to gold's established role in financial markets, the Quantum Reserve Token (QRT) positions quantum capacity as a potentially reliable asset by emphasizing trust in its durability and utility as a foundation for value. This aligns well with Keynes' (1936) liquidity preference theory.

Additionally, Schumpeterian (1934) views on innovation makes QRT a catalyst for technological advancements. This extends the QRT's role beyond a passive reflector of economic value.

A potential avenue for augmenting GDP opens up through Quantum computing's capacity to generate value through cost savings. Efficiency gains realized from optimizing shipping logistics or industrial energy use could reduce production costs. This realized savings could be reinvested, which could spur economic activity and potentially enhance output across key sectors. These mechanisms due to quantum technologies are projected to add billions annually to national economies by year 2035.

3.2 Operational Framework

The Quantum Reserve Token (QRT) is backed by quantum computational capacity. It is measured in qubit-hours (QH), where each QRT is linked to one QH of processing performed across a decentralized network. This backing ties QRT's value to the completion of quantum tasks that yield tangible and measurable economic benefits, such as optimization of shipping routes that reduce operational costs. Quantum computing driven optimized solutions of these routes could enhance efficiency and yield significant savings. This is in contrast to the classical computing, which incurs substantial energy and time costs for comparable tasks. These potential cost reductions are projected to far exceed those of traditional methods by 2035 (McKinsey 2023). This linkage to quantum capacity highlights QRT's role as a currency built on productive computational output, thereby distinguishing it from fiat systems contingent on monetary policy or physical reserves.

Consensus Mechanism: The consensus mechanism for Quantum Reserve Token (QRT) system employs a proof-of-computation (PoC) protocol, instead of the computationally intensive proof-of-work (PoW) model involving Bitcoin. Network nodes in this PoC framework validate

transactions and mint QRTs by completing quantum computational tasks. For example, one such task involves optimizing shipping fleet operations to reduce CO2 emissions using algorithms such as Grover's (1996), which proposes quadratic energy efficiency over classical methods. This process is supposed to be more energy-efficient than Bitcoin's PoW, which requires substantial electricity usage (Cambridge Bitcoin Electricity Consumption Index, 2024). The QRT network leverages on-blockchain zero-knowledge proofs to validate the integrity of computational outputs while also maintaining efficiency.² The linking of QRT issuance to quantum task completion ensures enhanced scalability. And it also allows the PoC protocol to aim for reduction in environmental impact relative to Bitcoin's PoW approach.

Supply Dynamics: QRT issuance follows:

$$S_t = S_{t-1}(1 + \alpha * \Delta GDP_W - \beta * \Delta Q_D)$$

Where S_t is the supply of QRT in the current time period, S_{t-1} is supply in the previous time period, ΔGDP_W is global GDP growth (for example, 3.2% in 2023, IMF, 2024b). The term ΔQ_D refers to quantum computational demand shocks (for example, a sudden increase in qbit-hour usage).the

_

² In the Quantum Reserve Token (QRT) system, nodes create tokens while executing useful quantum tasks, such as optimizing shipping logistics to cut CO2 emissions, which is different from Bitcoin miners who waste effort on meaningless puzzles while demonstrating proof-of-work (PoW). Each QRT equals one qubit-hour (QH) of quantum work, valued at say, \$50, according to the system's design. QRT uses a special method called zero-knowledge proofs to confirm that these tasks have been performed correctly without every node repeating the complex quantum calculations, which would be impractical owing to high resource demands (Abbas et al., 2023). Goldwasser et al. (1985) first developed this technique. This technique allows a node (the prover) to show other nodes (the verifiers) that a task, such as an optimization saving \$2 million, is valid without sharing all the details. In QRT, these proofs will be recorded on its blockchain, a shared digital ledger, using efficient tools like zk-SNARKs or zk-STARKs (see for example, Ben-Sasson et al., 2014), which are also found in Ethereum's layer-2 systems.

The trustworthiness of this system is protected by linking the result of a task, such as an improved shipping route, to the quantum work claimed, which stops nodes from submitting false results. Since QRT's proof-of-computation (PoC) rests on verifiable effort, different from Bitcoin's PoW, which relies on hash calculations, any incorrect proofs will be rejected by the system. This guarantees each QRT truly represents one QH of work. Additionally, this approach is efficient because quantum tasks, such as those using Grover's algorithm, use up significant energy, but zk-SNARKs—small at about 200 bytes—can be checked in milliseconds (Ben-Sasson et al., 2014). This saves the effort for every node to redo the work, unlike Bitcoin's energy-heavy PoW. This approach supports QRT's objectives of quick transfers and scalability. QRT aims to use far less energy than Bitcoin, making it a more sustainable option.

parameter $\alpha \in (0,1)$ is elasticity coefficient and ensures monetary stability (ala Friedman, 1968), and $\beta \in (0,1)$ is quantum demand adjustment factor, which offsets quantum demand shocks—e.g., a 10% capacity leap in 2035 cuts issuance by 1% if $\beta = 0.1$. Simulations (Table 1) using 2020–2024 global GDP yield a volatility of 3.29%, below the dollar's 8% and euro's 8% average annual volatilities (March 2023-March 2025, V-Lab, 2025).

Table 1: QRT Supply Simulation (2020–2024)

Year	Global GDP	Quantum	Initial	New Supply	Volatility
	Growth	Demand Shock	Supply	(S_t)	(\sigma , %)
	(ΔGDP_W)	(ΔQ_D)	(S_{t-1})		
2020	-3.1% (WB, 24)	0% (baseline)	10	9.845	-
2021	6% (WB, 24)	2% (early adoption)	9.845	10.294	3.2
2022	3% (WB, 24)	5% (tech leap)	10.294	10.565	3.1
2023	2.5% (WB, 24)	3% (stabilization)	10.565	10.797	3.2
2024	2.5% (IMF, 24b)	4% (scale-up)	10.797	11.025	3.2

Notes: Assumes 10 trillion QRT initial supply (2020), $\alpha = 0.5$, $\beta = 0.1$, Volatility calculated as standard deviation of annual growth rates.

Governance: A decentralized council devised to balance technical expertise, economic insight, and regional representation could form the governance structure of the Quantum Reserve Token (QRT) system. This council could include a mix of technologists and economists drawn from

quantum computing specialists from leading institutions, and economists from international bodies, respectively. Additionally, this governing council should include a rotating body of representatives from diverse regions, which could be drawn from central banks or technology ministries from developing nations. This type of composition would ensure broader stakeholder inputs. A quadratic voting mechanism such as the one proposed by Lalley and Weyl (2018) could be used to update protocols governing QRT. This will prioritize equitable decision-making rather than serving the interests of a few. This governing approach has the potential to remove prejudices that are typically associated with the dollar dominated systems. For example, it is not uncommon for the developing countries to experience significantly elevated borrowing costs when the Federal Reserve raises interest rate (IFC, 2024). Additionally, the governing council's membership should be on a rotational basis with longer tenure. This could promote inclusivity and adaptability in the QRT's governance framework.

4. Comparative Analysis with Digital Currencies

This section compares the Quantum Reserve Token (QRT) to three established digital currency frameworks, viz, Bitcoin, stablecoins such as Tether and USDC, and central bank digital currencies (CBDCs) like China's e-CNY on stability, efficiency, and resilience to assess its potential as a global reserve currency.

4.1 Bitcoin

Bitcoin is the first decentralized digital currency. It was created by Satoshi Nakamoto in 2008. Its supply is capped at 21 million coins and is secured by a proof-of-work (PoW) consensus mechanism. The network integrity of this structure is pretty solid. However, it is not very energy efficient as evidenced by the recent estimates of 169 terawatt hours annual consumption (CBECI, 2024). Moreover, the price volatility of Bitcoin observed over the years has significantly exceeded

the U.S. Dollar. This weakens its case to be a potential reserve currency, which requires reliability in the form of consistent value. Its practical utility suffers another blow due to variable transaction costs involved in cross-border payments.

4.2 Stablecoins

Stablecoins like Tether and USDC strive to maintain a one-to-one peg with the U.S. dollar. This allows them to maintain low volatility and therefore make them suitable for international transactions. Stablecoins could allow a merchant to send funds quickly to a foreign based supplier using the blockchain technology and sidestep the typical one-to-five-day delays and variable fees of existing systems like SWIFT. However, their stability claims crucially depend on reserve transparency. A point of contention highlighted by the 2021 New York Attorney General's settlement with Tether. It was found to be backed by a mix of cash-equivalents and riskier assets. The opaqueness in transparency can erode public's trust in these stablecoins, especially in times of financial stress. Additionally, centralized custodians exacerbate this risk, as seen in the 2022 U.S. seizure of Afghan central bank reserves, which cut off their access to dollar-backed assets. This example suggests similar uncertainties could emerge for the holders of stablecoins.

4.3 CBDCs

The digitized version of a fiat currency controlled by the state is known as the central bank digital currency (CBDC). China's e-CNY is a prime example of CBDC, which has been adopted domestically in a significant manner evident through its widespread use across millions of digital wallets in China by mid-2024. The use of e-CNY allows an exporter to settle large transactions quickly at a potentially lower cost compared to SWIFT's that has a longer settlement period. However, due to its centralized design, it remains an insignificant player in the global payments architecture. Another issue that arises with e-CNY is that retail transactions conducted through it

can be tracked by authorities. This might possibly limit its acceptance in regions that value privacy. This centralized oversight feature weakens its case to be a reserve currency on the grounds of autonomy sought in reserve currency alternatives.

QRT in Context

The Quantum Reserve Token (QRT) is different from these alternatives since it employs a proofof-computation (PoC) framework. It aims to balance efficiency and stability by generating tokens baked by quantum computational tasks. QRT differs from Bitcoin in terms of energy usage. Bitcoin's PoW framework is energy intensive, whereas QRT leverages quantum computing's documented potential for reduced power demands. Since QRT relies on Blockchain infrastructure, it has the potential to outperform both Bitcoin and SWIFT in lower transaction costs and quicker transfers. QRT differs from Stablecoins and CBDCs since its value originates from decentralized quantum output, whereas stablecoins rely on fiat reserves and CBDCs are centralized in nature due to their backing by the state. This decentralized feature could shield QRT from custodial vulnerabilities or geopolitical interference, as exemplified by the Afghan case. Furthermore, QRT offers tangible utility beyond serving as mere currency due to its ability to produce efficiency gains in sectors such as shipping and industrial applications attributable to optimization. This intrinsic value feature of QRT cannot be matched by Bitcoins, Stablecoins, and CBDCs. While facilities in technologically advanced regions could produce QRTs tied to such intrinsic value, its integrity is secured due to its presence on blockchain ledger, making it a resilient alternative.

5. Feasibility Assessment

Section 5: Feasibility Assessment

This section evaluates the feasibility of implementing the Quantum Reserve Token (QRT) as a global reserve currency on three dimensions, namely, technological, economic, and geopolitical.

This evaluation aims to identify prerequisites and potential obstacles to its adoption as a global reserve currency.

5.1 Technological Feasibility

The quantum computing infrastructure capable of providing scalable qubit-hours (QH) forms the operational foundation of QRT. As noted previously, the current systems such as IBM's 127-qubit Eagle processor (IBM, 2024), demonstrate quantum advantage—e.g., Google's 2019 supremacy test completed a task in 200 seconds versus a classical 10,000 years (Arute et al., 2019)—yet noise limits coherence to 100 microseconds (Preskill, 2018). IBM having achieved 1,121 qubits with Condor in 2023, aims for advanced systems by 2030. Hybrid quantum-classical nodes are expected to mature by 2028, which likely will enhance utility-scale computations across quantum and classical resources.

To put things in perspective, a hypothetical network of 1,000 such nodes, each producing 50,000 QRTs monthly (equivalent to \$2.5 million at \$50/QRT), could generate 600 million QRTs annually (\$30billion), sufficient to support \$60 billion in transactions at a velocity of 2.

The Quantum Reserve Token (QRT) network's objective is to be highly efficient in energy consumption, potentially consuming significantly less power than the Bitcoin's observed consumption. The energy efficiency of quantum computing advancements allows QRT to minimize its environmental footprints. However, substantial investments will be needed to scale up this infrastructure. The exact costs will depend on how the quantum technology evolves over time. The feasibility of installing such a network depends on advances made in quantum error correction techniques, as pointed out by Preskill (2018).

5.2 Economic Viability

The economic viability of the Quantum Reserve Token (QRT) depends on its ability to provide positive economic returns, while maintaining operational stability through proof-of-computation framework. This framework could potentially benefit sectors such as global shipping, in which logistics operations could be optimized through quantum computational tasks. This kind of efficiency gains have been reported in related sectors. Unlike traditional cryptocurrencies, QRT derives its value from quantum computing output, which differentiates it from gold like assets that have been used as money and possess intrinsic value. QRT has the potential to augment the reserve holdings of participating economies if it is accommodated within a portion of the global trade, monitored by the World Trade Organization.

The potential economic contributions of QRT to the World GDP could rival that of the Internet's during its initial adoption phase due to its ability to leverage quantum computing to drive operational improvements in different sectors. However, it will be a significant challenge for QRT to achieving liquidity comparable to that of the U.S. dollar's, whose daily foreign exchange turnover was reported to be \$5.6 trillion in 2022 (BIS 2022).

5.3 Geopolitical Considerations

The super power rivalry between the United States and China requires that the QRT maintain its neutrality in order to retain its geopolitical viability. The U.S. dollar's dominance (approximately 59% of global allocated reserves according to IMF, 2024) and China's e-CNY (characterized by state oversight) may make many countries uncomfortable in terms of maintaining reserves in these currencies. QRT's decentralized governance structure is likely to appeal neutral states such as Switzerland or India, the latter reportedly holding substantial dollar-denominated assets in its reserves. However, the United States and China could resist or delay the node deployment of QRT, since they dominate quantum technology patents holdings. Nevertheless, if developing economies,

such as Brazil with significant trade volumes, adopt QRT, it could skirt superpower influence. The feasibility of QRT therefore likely depends on neutral and emerging markets forging coalitions among themselves.

6. Conclusion and Future Directions

In this study I evaluate the potential of Quantum Reserve Token (QRT) as a decentralized digital currency. QRT is backed by quantum computational capacity. It is positioned as a viable alternative to existing reserve systems. My analysis demonstrates that QRT addresses critical deficiencies in current monetary frameworks. It offers a robust synthesis of stability, neutrality, and economic utility that distinguishes it from Bitcoin, stablecoins, and CBDCs.

QRT's design ensures monetary stability, with its supply function

$$S_t = S_{t-1}(1 + 0.5 * \Delta GDP_W - 0.1 * \Delta Q_D),$$

maintaining volatility below 5%—e.g., σ = 3.2% across 2020–2024 simulations (Refer to Table 1)—outperforming the U.S. dollar's 8% (FRED, 2024) and Bitcoin's 80% (Baur & Dimpfl, 2018). The stability of the Quantum Reserve Token (QRT) is rooted in its linkage to quantum computing power, which supports tangible economic benefits through computational efficiency. This is in contrast with the vulnerabilities of stablecoins dependent on fiat reserves, as demonstrated by Tether's limited cash backing in 2019–2021 (NYAG, 2021), and the state-centric limitations of central bank digital currencies like China's e-CNY. QRT's decentralized structure offers a resilient alternative to the U.S. dollar, which dominates global reserves at approximately 59% (IMF, 2024). It also mitigates privacy concerns inherent in CBDCs, as noted in studies of digital currency design (Auer et al., 2022). Practical applications could include reducing transaction costs for international trade compared to systems like SWIFT, while leveraging quantum advancements to enhance operational savings.

QRT's adoption across developing regions will depend on it maintaining its geopolitical neutrality.

This will likely mitigate the influence of major powers, such as those leading in quantum

technology development. This adoption could increase economic inclusion of the marginalized

economies. However, nations with significant technological advantages might resist it. QRT's

scalability depends on advancements in quantum error correction, as outlined in foundational

research (Preskill, 2018). It has the potential to compete with the dollar's substantial daily foreign

exchange turnover (BIS, 2022). QRT thus provides a framework for a future reserve currency,

leveraging quantum capabilities to offer stability and utility distinct from existing systems. Its

success requires rigorous testing through pilot initiatives and collaboration among diverse

economies to balance implementation. Further research will be needed to optimize its operational

model and adoption strategies.

Acknowledgements: The author has no conflict to report.

References

[1] Abbas, Amira, Sebastian Woerner, and 44 others. 2023. "Challenges and Opportunities in

Quantum Optimization." arXiv preprint arXiv:2312.02279v3. Updated November 17, 2024.

https://arxiv.org/abs/2312.02279.

[2] Arute, Frank, Kunal Arya, Ryan Babbush, and others. 2019. "Quantum Supremacy Using a 505-510.

Superconducting Programmable Processor." Nature 574 (7779):

https://doi.org/10.1038/s41586-019-1666-5.

[3] Auer, Raphael, Jon Frost, Leonardo Gambacorta, Cyril Monnet, Tara Rice, and Hyun Song

Shin. 2022. "Central Bank Digital Currencies: Motives, Economic Implications, and the Research

Frontier." Annual Review of Economics 14 (1): 697–721.

[4] Baur, Dirk G., and Thomas Dimpfl. 2018. "Asymmetric Volatility in Cryptocurrencies."

Economics Letters 173: 148–151. https://doi.org/10.1016/j.econlet.2018.10.008.

15

- [5] BCG (Boston Consulting Group). 2024. Quantum Computing On Track to Create Up to \$850 Billion of Economic Value By 2040. Boston: BCG Publications.
- [6] Ben-Sasson, Eli, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza. 2014. "SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge." In *Proceedings of the 33rd Annual Cryptology Conference (CRYPTO 2014)*, 90–108. Berlin: Springer. https://doi.org/10.1007/978-3-662-44381-1_6.
- [7] BIS (Bank for International Settlements). 2022. Triennial Central Bank Survey of Foreign Exchange and OTC Derivatives Markets. Basel: BIS.
- [8] Bordo, Michael D., and Anna J. Schwartz, eds. 1984. *A Retrospective on the Classical Gold Standard*, 1821–1931. Chicago: University of Chicago Press.
- [9] Brass, Clinton T., Ida A. Brudnick, Natalie Keegan, Barry J. McMillion, John W. Rollins, and Brian T. Yeh. 2018. *Shutdown of the Federal Government: Causes, Processes, and Effects*. Washington, DC: Congressional Research Service, Library of Congress, December 10.
- [10] Cash, Joe. 2023. "China, Saudi Arabia Sign Currency Swap Agreement." *Reuters*, November 20, 2023. https://www.reuters.com.
- [11] CBECI (Cambridge Bitcoin Electricity Consumption Index). 2024. "Bitcoin Network Power Demand." Accessed March 17, 2025. https://ccaf.io/cbeci/index.
- [12] Circle. 2024. USDC Transparency Report: Reserve Composition and Stability. New York: Circle Internet Financial.
- [13] CoinMarketCap. 2024. "Bitcoin Market Capitalization Data." Accessed March 17, 2025. https://coinmarketcap.com/currencies/bitcoin/.
- [14] DNV (Det Norske Veritas). 2023. Shipping Efficiency Report: Optimization Strategies and Cost Savings. Oslo: DNV GL.
- [15] Eichengreen, Barry. 2011. Exorbitant Privilege: The Rise and Fall of the Dollar and the Future of the International Monetary System. Oxford: Oxford University Press.
- [16] Eichengreen, Barry. 2019. *Globalizing Capital: A History of the International Monetary System*. Princeton, NJ: Princeton University Press.
- [17] Farhi, Emmanuel, and Matteo Maggiori. 2018. "A Model of the International Monetary System." *Quarterly Journal of Economics* 133 (1): 295–355.

- [18] Fisher, Irving. 1911a. "The Equation of Exchange,' 1896–1910." *American Economic Review* 1 (2): 296–305.
- [19] Fisher, Irving. 1911b. *The Purchasing Power of Money: Its Determination and Relation to Credit, Interest and Crises.* New York: Macmillan.
- [20] Friedman, Milton. 1968. "The Role of Monetary Policy." *American Economic Review* 58 (1): 1–17.
- [20] Goldwasser, Shafi, Silvio Micali, and Charles Rackoff. 1985. "The Knowledge Complexity of Interactive Proof-Systems." In *Proceedings of the 17th Annual ACM Symposium on Theory of Computing (STOC '85)*, 291–304. New York: Association for Computing Machinery. https://doi.org/10.1145/22145.22178.
- [21] Grover, Lov K. 1996. "A Fast Quantum Mechanical Algorithm for Database Search." In *Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing*, 212–219. New York: Association for Computing Machinery.
- [22] IBM. 2024. Quantum Roadmap. Armonk, NY: IBM Research.
- [23] Iancu, Alina, Gareth Anderson, Sakai Ando, Ethan Boswell, Andrea Gamba, Shushanik Hakobyan, Lusine Lusinyan, Neil Meads, and Yiqun Wu. 2022. "Reserve Currencies in an Evolving International Monetary System." *Open Economies Review* 33 (5): 879–915.
- [24] IEA (International Energy Agency). 2024. World Energy Outlook 2024. Paris: IEA Publications.
- [25] IMF (International Monetary Fund). 2024. Currency Composition of Official Foreign Exchange Reserves (COFER). Washington, DC: IMF.
- [26] Keynes, John Maynard. 1973. *The General Theory of Employment, Interest and Money*. London: Macmillan. First published 1936.
- [27] Kindleberger, Charles P. 1981. *International Money: A Collection of Essays*. London: Allen & Unwin.
- [28] Kindleberger, Charles P. 1986. *The World in Depression*, 1929–1939. Revised and enlarged edition. Berkeley: University of California Press.
- [29] Lalley, Steven P., and E. Glen Weyl. 2018. "Quadratic Voting: How Mechanism Design Can Radicalize Democracy." In *AEA Papers and Proceedings*, vol. 108, 33–37. Nashville, TN: American Economic Association.

- [30] Mundell, Robert A. 1961. "A Theory of Optimum Currency Areas." *American Economic Review* 51 (4): 657–665. http://www.jstor.org/stable/1812792.
- [31] Nakamoto, Satoshi. 2008. "Bitcoin: A Peer-to-Peer Electronic Cash System." White paper. https://bitcoin.org/bitcoin.pdf.
- [32] Nielsen, Michael A., and Isaac L. Chuang. 2010. *Quantum Computation and Quantum Information*. Cambridge: Cambridge University Press.
- [33] NYAG (New York Attorney General). 2021. Settlement Agreement with Tether Limited and Bitfinex. New York: Office of the Attorney General.
- [34] OECD (Organisation for Economic Co-operation and Development). 2001. *The Internet Economy: Measuring Its Impact*. Paris: OECD Publishing.
- [35] People's Bank of China. 2023. *Digital Yuan (e-CNY) Progress Report*. Beijing: People's Bank of China.
- [36] Prasad, Eswar, and Lei Ye. 2013. "The Renminbi's Prospects as a Global Reserve Currency." *Cato Journal* 33:563–583.
- [37] Preskill, John. 2018. "Quantum Computing in the NISQ Era and Beyond." *Quantum* 2:79. https://doi.org/10.22331/q-2018-08-06-79.
- [38] Safaricom. 2023. *M-Pesa Impact Report: Financial Inclusion in Kenya*. Nairobi: Safaricom PLC. https://www.safaricom.co.ke/annualreport_2023/m-pesa.html.
- [39] Schumpeter, Joseph A. 1934. *The Theory of Economic Development*. Translated by Redvers Opie. Cambridge, MA: Harvard University Press. First published in German 1912.
- [40] Shor, Peter W. 1999. "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer." *SIAM Review* 41 (2): 303–332.
- [41] SWIFT (Society for Worldwide Interbank Financial Telecommunication). 2024. *Global Payments Report: Cross-Border Transaction Trends*. Brussels: SWIFT.
- [42] Triffin, Robert. 1960. "The Size of the Nation and Its Vulnerability to Economic Nationalism." In *Economic Consequences of the Size of Nations: Proceedings of a Conference Held by the International Economic Association*, edited by E. A. G. Robinson, 247–264. London: Palgrave Macmillan UK.
- [43] World Bank. 2021. Global Financial Inclusion Report. Washington, DC: World Bank.

- [44] World Bank. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
- [45] World Bank. 2023. Remittance Prices Worldwide: Transaction Cost Analysis. Washington, DC: World Bank.
- [46] World Bank. 2024. World Development Indicators: GDP Growth Rates. Washington, DC: World Bank.
- [47] World Gold Council. 2024. *Gold Market Overview: Reserves and Valuation*. London: World Gold Council.
- [48] WTO (World Trade Organization). 2024. World Trade Statistical Review. Geneva: WTO.